\(\int \frac {\cos ^2(c+d x) (B \cos (c+d x)+C \cos ^2(c+d x))}{(a+b \cos (c+d x))^{5/2}} \, dx\) [847]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 42, antiderivative size = 413 \[ \int \frac {\cos ^2(c+d x) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^{5/2}} \, dx=\frac {2 \left (8 a^4 b B-15 a^2 b^3 B+3 b^5 B-16 a^5 C+28 a^3 b^2 C-8 a b^4 C\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{3 b^4 \left (a^2-b^2\right )^2 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 \left (8 a^3 b B-9 a b^3 B-16 a^4 C+16 a^2 b^2 C+b^4 C\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{3 b^4 \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}+\frac {2 a (b B-a C) \cos ^2(c+d x) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}-\frac {2 a^2 \left (3 a^2 b B-7 b^3 B-6 a^3 C+10 a b^2 C\right ) \sin (c+d x)}{3 b^3 \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}}-\frac {2 \left (a b B-2 a^2 C+b^2 C\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{3 b^3 \left (a^2-b^2\right ) d} \]

[Out]

2/3*a*(B*b-C*a)*cos(d*x+c)^2*sin(d*x+c)/b/(a^2-b^2)/d/(a+b*cos(d*x+c))^(3/2)-2/3*a^2*(3*B*a^2*b-7*B*b^3-6*C*a^
3+10*C*a*b^2)*sin(d*x+c)/b^3/(a^2-b^2)^2/d/(a+b*cos(d*x+c))^(1/2)-2/3*(B*a*b-2*C*a^2+C*b^2)*sin(d*x+c)*(a+b*co
s(d*x+c))^(1/2)/b^3/(a^2-b^2)/d+2/3*(8*B*a^4*b-15*B*a^2*b^3+3*B*b^5-16*C*a^5+28*C*a^3*b^2-8*C*a*b^4)*(cos(1/2*
d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*(a+b*cos(d*x+c))^
(1/2)/b^4/(a^2-b^2)^2/d/((a+b*cos(d*x+c))/(a+b))^(1/2)-2/3*(8*B*a^3*b-9*B*a*b^3-16*C*a^4+16*C*a^2*b^2+C*b^4)*(
cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos
(d*x+c))/(a+b))^(1/2)/b^4/(a^2-b^2)/d/(a+b*cos(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.99 (sec) , antiderivative size = 413, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {3108, 3068, 3110, 3102, 2831, 2742, 2740, 2734, 2732} \[ \int \frac {\cos ^2(c+d x) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^{5/2}} \, dx=\frac {2 a (b B-a C) \sin (c+d x) \cos ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}-\frac {2 \left (-2 a^2 C+a b B+b^2 C\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 b^3 d \left (a^2-b^2\right )}-\frac {2 a^2 \left (-6 a^3 C+3 a^2 b B+10 a b^2 C-7 b^3 B\right ) \sin (c+d x)}{3 b^3 d \left (a^2-b^2\right )^2 \sqrt {a+b \cos (c+d x)}}-\frac {2 \left (-16 a^4 C+8 a^3 b B+16 a^2 b^2 C-9 a b^3 B+b^4 C\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{3 b^4 d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}+\frac {2 \left (-16 a^5 C+8 a^4 b B+28 a^3 b^2 C-15 a^2 b^3 B-8 a b^4 C+3 b^5 B\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{3 b^4 d \left (a^2-b^2\right )^2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}}} \]

[In]

Int[(Cos[c + d*x]^2*(B*Cos[c + d*x] + C*Cos[c + d*x]^2))/(a + b*Cos[c + d*x])^(5/2),x]

[Out]

(2*(8*a^4*b*B - 15*a^2*b^3*B + 3*b^5*B - 16*a^5*C + 28*a^3*b^2*C - 8*a*b^4*C)*Sqrt[a + b*Cos[c + d*x]]*Ellipti
cE[(c + d*x)/2, (2*b)/(a + b)])/(3*b^4*(a^2 - b^2)^2*d*Sqrt[(a + b*Cos[c + d*x])/(a + b)]) - (2*(8*a^3*b*B - 9
*a*b^3*B - 16*a^4*C + 16*a^2*b^2*C + b^4*C)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a
 + b)])/(3*b^4*(a^2 - b^2)*d*Sqrt[a + b*Cos[c + d*x]]) + (2*a*(b*B - a*C)*Cos[c + d*x]^2*Sin[c + d*x])/(3*b*(a
^2 - b^2)*d*(a + b*Cos[c + d*x])^(3/2)) - (2*a^2*(3*a^2*b*B - 7*b^3*B - 6*a^3*C + 10*a*b^2*C)*Sin[c + d*x])/(3
*b^3*(a^2 - b^2)^2*d*Sqrt[a + b*Cos[c + d*x]]) - (2*(a*b*B - 2*a^2*C + b^2*C)*Sqrt[a + b*Cos[c + d*x]]*Sin[c +
 d*x])/(3*b^3*(a^2 - b^2)*d)

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2831

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 3068

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(b*c - a*d))*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1
)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(d*(n + 1)*(c^2 - d^2)), Int[(a + b*Si
n[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1)*Simp[b*(b*c - a*d)*(B*c - A*d)*(m - 1) + a*d*(a*A*c + b*B*c -
 (A*b + a*B)*d)*(n + 1) + (b*(b*d*(B*c - A*d) + a*(A*c*d + B*(c^2 - 2*d^2)))*(n + 1) - a*(b*c - a*d)*(B*c - A*
d)*(n + 2))*Sin[e + f*x] + b*(d*(A*b*c + a*B*c - a*A*d)*(m + n + 1) - b*B*(c^2*m + d^2*(n + 1)))*Sin[e + f*x]^
2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2
, 0] && GtQ[m, 1] && LtQ[n, -1]

Rule 3102

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(
b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 3108

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[1/b^2, Int[(a + b*Sin[e + f*x])
^(m + 1)*(c + d*Sin[e + f*x])^n*(b*B - a*C + b*C*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 3110

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (B_.)*sin[(e
_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(b*c - a*d))*(A*b^2 - a*b*B + a^2*C)
*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b^2*f*(m + 1)*(a^2 - b^2))), x] - Dist[1/(b^2*(m + 1)*(a^2 - b^2)
), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(m + 1)*((b*B - a*C)*(b*c - a*d) - A*b*(a*c - b*d)) + (b*B*(a^2*d +
 b^2*d*(m + 1) - a*b*c*(m + 2)) + (b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))*Sin[e + f*x] - b*C*d*(m
 + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] &&
NeQ[a^2 - b^2, 0] && LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \int \frac {\cos ^3(c+d x) (B+C \cos (c+d x))}{(a+b \cos (c+d x))^{5/2}} \, dx \\ & = \frac {2 a (b B-a C) \cos ^2(c+d x) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}-\frac {2 \int \frac {\cos (c+d x) \left (-2 a (b B-a C)+\frac {3}{2} b (b B-a C) \cos (c+d x)+\frac {3}{2} \left (a b B-2 a^2 C+b^2 C\right ) \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^{3/2}} \, dx}{3 b \left (a^2-b^2\right )} \\ & = \frac {2 a (b B-a C) \cos ^2(c+d x) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}-\frac {2 a^2 \left (3 a^2 b B-7 b^3 B-6 a^3 C+10 a b^2 C\right ) \sin (c+d x)}{3 b^3 \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}}-\frac {4 \int \frac {-\frac {1}{4} a b \left (3 a^2 b B-7 b^3 B-6 a^3 C+10 a b^2 C\right )-\frac {1}{4} \left (6 a^4 b B-13 a^2 b^3 B+3 b^5 B-12 a^5 C+22 a^3 b^2 C-6 a b^4 C\right ) \cos (c+d x)+\frac {3}{4} b \left (a^2-b^2\right ) \left (a b B-2 a^2 C+b^2 C\right ) \cos ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{3 b^3 \left (a^2-b^2\right )^2} \\ & = \frac {2 a (b B-a C) \cos ^2(c+d x) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}-\frac {2 a^2 \left (3 a^2 b B-7 b^3 B-6 a^3 C+10 a b^2 C\right ) \sin (c+d x)}{3 b^3 \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}}-\frac {2 \left (a b B-2 a^2 C+b^2 C\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{3 b^3 \left (a^2-b^2\right ) d}-\frac {8 \int \frac {-\frac {3}{8} b^2 \left (2 a^3 b B-6 a b^3 B-4 a^4 C+7 a^2 b^2 C+b^4 C\right )-\frac {3}{8} b \left (8 a^4 b B-15 a^2 b^3 B+3 b^5 B-16 a^5 C+28 a^3 b^2 C-8 a b^4 C\right ) \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{9 b^4 \left (a^2-b^2\right )^2} \\ & = \frac {2 a (b B-a C) \cos ^2(c+d x) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}-\frac {2 a^2 \left (3 a^2 b B-7 b^3 B-6 a^3 C+10 a b^2 C\right ) \sin (c+d x)}{3 b^3 \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}}-\frac {2 \left (a b B-2 a^2 C+b^2 C\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{3 b^3 \left (a^2-b^2\right ) d}-\frac {\left (8 a^3 b B-9 a b^3 B-16 a^4 C+16 a^2 b^2 C+b^4 C\right ) \int \frac {1}{\sqrt {a+b \cos (c+d x)}} \, dx}{3 b^4 \left (a^2-b^2\right )}+\frac {\left (8 a^4 b B-15 a^2 b^3 B+3 b^5 B-16 a^5 C+28 a^3 b^2 C-8 a b^4 C\right ) \int \sqrt {a+b \cos (c+d x)} \, dx}{3 b^4 \left (a^2-b^2\right )^2} \\ & = \frac {2 a (b B-a C) \cos ^2(c+d x) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}-\frac {2 a^2 \left (3 a^2 b B-7 b^3 B-6 a^3 C+10 a b^2 C\right ) \sin (c+d x)}{3 b^3 \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}}-\frac {2 \left (a b B-2 a^2 C+b^2 C\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{3 b^3 \left (a^2-b^2\right ) d}+\frac {\left (\left (8 a^4 b B-15 a^2 b^3 B+3 b^5 B-16 a^5 C+28 a^3 b^2 C-8 a b^4 C\right ) \sqrt {a+b \cos (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}} \, dx}{3 b^4 \left (a^2-b^2\right )^2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {\left (\left (8 a^3 b B-9 a b^3 B-16 a^4 C+16 a^2 b^2 C+b^4 C\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{3 b^4 \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}} \\ & = \frac {2 \left (8 a^4 b B-15 a^2 b^3 B+3 b^5 B-16 a^5 C+28 a^3 b^2 C-8 a b^4 C\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{3 b^4 \left (a^2-b^2\right )^2 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 \left (8 a^3 b B-9 a b^3 B-16 a^4 C+16 a^2 b^2 C+b^4 C\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{3 b^4 \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}+\frac {2 a (b B-a C) \cos ^2(c+d x) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}-\frac {2 a^2 \left (3 a^2 b B-7 b^3 B-6 a^3 C+10 a b^2 C\right ) \sin (c+d x)}{3 b^3 \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}}-\frac {2 \left (a b B-2 a^2 C+b^2 C\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{3 b^3 \left (a^2-b^2\right ) d} \\ \end{align*}

Mathematica [A] (verified)

Time = 3.97 (sec) , antiderivative size = 334, normalized size of antiderivative = 0.81 \[ \int \frac {\cos ^2(c+d x) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^{5/2}} \, dx=\frac {2 \left (\frac {\left (\frac {a+b \cos (c+d x)}{a+b}\right )^{3/2} \left (b^2 \left (2 a^3 b B-6 a b^3 B-4 a^4 C+7 a^2 b^2 C+b^4 C\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )-\left (-8 a^4 b B+15 a^2 b^3 B-3 b^5 B+16 a^5 C-28 a^3 b^2 C+8 a b^4 C\right ) \left ((a+b) E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )-a \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )\right )\right )}{(a-b)^2 (a+b)}+\frac {b \left (-8 a^5 b B+16 a^3 b^3 B+16 a^6 C-25 a^4 b^2 C+b^6 C+2 a b \left (-5 a^3 b B+9 a b^3 B+10 a^4 C-16 a^2 b^2 C+2 b^4 C\right ) \cos (c+d x)+\left (-a^2 b+b^3\right )^2 C \cos (2 (c+d x))\right ) \sin (c+d x)}{2 \left (a^2-b^2\right )^2}\right )}{3 b^4 d (a+b \cos (c+d x))^{3/2}} \]

[In]

Integrate[(Cos[c + d*x]^2*(B*Cos[c + d*x] + C*Cos[c + d*x]^2))/(a + b*Cos[c + d*x])^(5/2),x]

[Out]

(2*((((a + b*Cos[c + d*x])/(a + b))^(3/2)*(b^2*(2*a^3*b*B - 6*a*b^3*B - 4*a^4*C + 7*a^2*b^2*C + b^4*C)*Ellipti
cF[(c + d*x)/2, (2*b)/(a + b)] - (-8*a^4*b*B + 15*a^2*b^3*B - 3*b^5*B + 16*a^5*C - 28*a^3*b^2*C + 8*a*b^4*C)*(
(a + b)*EllipticE[(c + d*x)/2, (2*b)/(a + b)] - a*EllipticF[(c + d*x)/2, (2*b)/(a + b)])))/((a - b)^2*(a + b))
 + (b*(-8*a^5*b*B + 16*a^3*b^3*B + 16*a^6*C - 25*a^4*b^2*C + b^6*C + 2*a*b*(-5*a^3*b*B + 9*a*b^3*B + 10*a^4*C
- 16*a^2*b^2*C + 2*b^4*C)*Cos[c + d*x] + (-(a^2*b) + b^3)^2*C*Cos[2*(c + d*x)])*Sin[c + d*x])/(2*(a^2 - b^2)^2
)))/(3*b^4*d*(a + b*Cos[c + d*x])^(3/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1411\) vs. \(2(447)=894\).

Time = 43.80 (sec) , antiderivative size = 1412, normalized size of antiderivative = 3.42

method result size
default \(\text {Expression too large to display}\) \(1412\)
parts \(\text {Expression too large to display}\) \(2208\)

[In]

int(cos(d*x+c)^2*(B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+cos(d*x+c)*b)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-(-(-2*b*cos(1/2*d*x+1/2*c)^2-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*a^2*(3*B*b-4*C*a)/b^4/sin(1/2*d*x+1/2*c)^2/
(2*b*sin(1/2*d*x+1/2*c)^2-a-b)/(a^2-b^2)*(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*cos(1
/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*b+EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*(-2*b/(a-b)*sin(1/2*d*x+
1/2*c)^2+(a+b)/(a-b))^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*a-EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*(-
2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*b)-2*a^3*(B*b-C*a)/b^4*(1/6/b/(
a-b)/(a+b)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)
^2+1/2*(a-b)/b)^2+8/3*sin(1/2*d*x+1/2*c)^2*b/(a-b)^2/(a+b)^2*cos(1/2*d*x+1/2*c)*a/(-(-2*b*cos(1/2*d*x+1/2*c)^2
-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)+(3*a-b)/(3*a^3+3*a^2*b-3*a*b^2-3*b^3)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos
(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos
(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-4/3*a/(a-b)/(a+b)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^
2+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c)
,(-2*b/(a-b))^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))))-2/3/b^4/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+
b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-4*C*b^2*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+9*B*a*b*(sin(1/2*d*x+1/2*c)^2
)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-3
*B*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c
)^2+(a+b)/(a-b))^(1/2)*a*b+3*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2
)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b^2+2*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*a*b+2*C*cos
(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*b^2-17*a^2*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^
2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-
b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b^2+8*C*(sin(1/2*d
*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b
))^(1/2))*a^2-8*C*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*si
n(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*a*b))/sin(1/2*d*x+1/2*c)/(-2*b*sin(1/2*d*x+1/2*c)^2+a+b)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.22 (sec) , antiderivative size = 1348, normalized size of antiderivative = 3.26 \[ \int \frac {\cos ^2(c+d x) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^{5/2}} \, dx=\text {Too large to display} \]

[In]

integrate(cos(d*x+c)^2*(B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/9*(6*(8*C*a^6*b^2 - 4*B*a^5*b^3 - 13*C*a^4*b^4 + 8*B*a^3*b^5 + C*a^2*b^6 + (C*a^4*b^4 - 2*C*a^2*b^6 + C*b^8)
*cos(d*x + c)^2 + (10*C*a^5*b^3 - 5*B*a^4*b^4 - 16*C*a^3*b^5 + 9*B*a^2*b^6 + 2*C*a*b^7)*cos(d*x + c))*sqrt(b*c
os(d*x + c) + a)*sin(d*x + c) + (sqrt(2)*(-32*I*C*a^6*b^2 + 16*I*B*a^5*b^3 + 68*I*C*a^4*b^4 - 36*I*B*a^3*b^5 -
 37*I*C*a^2*b^6 + 24*I*B*a*b^7 - 3*I*C*b^8)*cos(d*x + c)^2 - 2*sqrt(2)*(32*I*C*a^7*b - 16*I*B*a^6*b^2 - 68*I*C
*a^5*b^3 + 36*I*B*a^4*b^4 + 37*I*C*a^3*b^5 - 24*I*B*a^2*b^6 + 3*I*C*a*b^7)*cos(d*x + c) + sqrt(2)*(-32*I*C*a^8
 + 16*I*B*a^7*b + 68*I*C*a^6*b^2 - 36*I*B*a^5*b^3 - 37*I*C*a^4*b^4 + 24*I*B*a^3*b^5 - 3*I*C*a^2*b^6))*sqrt(b)*
weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*
x + c) + 2*a)/b) + (sqrt(2)*(32*I*C*a^6*b^2 - 16*I*B*a^5*b^3 - 68*I*C*a^4*b^4 + 36*I*B*a^3*b^5 + 37*I*C*a^2*b^
6 - 24*I*B*a*b^7 + 3*I*C*b^8)*cos(d*x + c)^2 - 2*sqrt(2)*(-32*I*C*a^7*b + 16*I*B*a^6*b^2 + 68*I*C*a^5*b^3 - 36
*I*B*a^4*b^4 - 37*I*C*a^3*b^5 + 24*I*B*a^2*b^6 - 3*I*C*a*b^7)*cos(d*x + c) + sqrt(2)*(32*I*C*a^8 - 16*I*B*a^7*
b - 68*I*C*a^6*b^2 + 36*I*B*a^5*b^3 + 37*I*C*a^4*b^4 - 24*I*B*a^3*b^5 + 3*I*C*a^2*b^6))*sqrt(b)*weierstrassPIn
verse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + c) + 2*a)/
b) - 3*(sqrt(2)*(16*I*C*a^5*b^3 - 8*I*B*a^4*b^4 - 28*I*C*a^3*b^5 + 15*I*B*a^2*b^6 + 8*I*C*a*b^7 - 3*I*B*b^8)*c
os(d*x + c)^2 + 2*sqrt(2)*(16*I*C*a^6*b^2 - 8*I*B*a^5*b^3 - 28*I*C*a^4*b^4 + 15*I*B*a^3*b^5 + 8*I*C*a^2*b^6 -
3*I*B*a*b^7)*cos(d*x + c) + sqrt(2)*(16*I*C*a^7*b - 8*I*B*a^6*b^2 - 28*I*C*a^5*b^3 + 15*I*B*a^4*b^4 + 8*I*C*a^
3*b^5 - 3*I*B*a^2*b^6))*sqrt(b)*weierstrassZeta(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, weierstr
assPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) +
 2*a)/b)) - 3*(sqrt(2)*(-16*I*C*a^5*b^3 + 8*I*B*a^4*b^4 + 28*I*C*a^3*b^5 - 15*I*B*a^2*b^6 - 8*I*C*a*b^7 + 3*I*
B*b^8)*cos(d*x + c)^2 + 2*sqrt(2)*(-16*I*C*a^6*b^2 + 8*I*B*a^5*b^3 + 28*I*C*a^4*b^4 - 15*I*B*a^3*b^5 - 8*I*C*a
^2*b^6 + 3*I*B*a*b^7)*cos(d*x + c) + sqrt(2)*(-16*I*C*a^7*b + 8*I*B*a^6*b^2 + 28*I*C*a^5*b^3 - 15*I*B*a^4*b^4
- 8*I*C*a^3*b^5 + 3*I*B*a^2*b^6))*sqrt(b)*weierstrassZeta(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3
, weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(
d*x + c) + 2*a)/b)))/((a^4*b^7 - 2*a^2*b^9 + b^11)*d*cos(d*x + c)^2 + 2*(a^5*b^6 - 2*a^3*b^8 + a*b^10)*d*cos(d
*x + c) + (a^6*b^5 - 2*a^4*b^7 + a^2*b^9)*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^2(c+d x) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**2*(B*cos(d*x+c)+C*cos(d*x+c)**2)/(a+b*cos(d*x+c))**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\cos ^2(c+d x) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} \cos \left (d x + c\right )^{2}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(cos(d*x+c)^2*(B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))*cos(d*x + c)^2/(b*cos(d*x + c) + a)^(5/2), x)

Giac [F]

\[ \int \frac {\cos ^2(c+d x) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} \cos \left (d x + c\right )^{2}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(cos(d*x+c)^2*(B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))*cos(d*x + c)^2/(b*cos(d*x + c) + a)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^2(c+d x) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^{5/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^2\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )\right )}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

[In]

int((cos(c + d*x)^2*(B*cos(c + d*x) + C*cos(c + d*x)^2))/(a + b*cos(c + d*x))^(5/2),x)

[Out]

int((cos(c + d*x)^2*(B*cos(c + d*x) + C*cos(c + d*x)^2))/(a + b*cos(c + d*x))^(5/2), x)